¿­Ê±

¿­Ê±|AG(AsiaGaming)ÓÅÖÊÔËÓªÉÌ

ʦ×ʲ½¶Ó

ÄúÏÖÔÚµÄλÖ㺠Ê×Ò³- ʦ×ʲ½¶Ó- ´¢²ãË¢ÐÂÓ뿪·¢¹¤³ÌÑо¿Ëù

¼ÖõÀ ¸±Ñо¿Ô±

image.png

¼ÖõÀ £¬¿­Ê±£¨±±¾©£©¸±Ñо¿Ô±¡¢²©Ê¿Éúµ¼Ê¦ £¬2020ÄêÈëѡѧУÓÅÒìÇàÄêѧÕßÅàÓýÍýÏë ¡£2018Äê½áÒµÓÚÃÀ¹ú¿°ÈøË¹´óѧ(University of Kansas) £¬»¯Ñ§ÓëʯÓ͹¤³Ìרҵ £¬»ñFrank Bowdish Outstanding Ph.D. Award ¡£ÔøÓÚÃÀ¹ú±±´ï¿ÆËû´óѧ(University of North Dakota)ʯÓ͹¤³Ìϵµ£µ±ÖúÀí½ÌÊÚ¡¢²©Ê¿Éúµ¼Ê¦£»ÓÚÃÀ¹úÇéÐÎÓëÄÜÔ´Ñо¿ÖÐÐÄ(Energy & Environmental Research Center)µ£µ±¶þ¼¶ÓͲع¤³Ìʦ,Ö÷³Ö/¼ÓÈëÃÀ¹úÄÜÔ´²¿ÓëÖÝÕþ¸®·ÇͨÀýÓÍÆøÌ↑·¢Ïà¹ØÏîÄ¿¶àÏî ¡£Ñо¿Æ«ÏòΪ·ÇͨÀýÓÍÆøÌ↑·¢ÓëÌá¸ß²ÉÊÕÂÊ £¬°üÀ¨¶à¿×½éÖÊÉøÁ÷ÀíÂÛ¡¢µØÖʹ¤³ÌÒ»Ì廯Á¢Ì忪·¢ÀíÂÛ¡¢³¬µÍÉøÁ÷ÌåÏà̬ÓëÁ÷¶¯ÊµÑéºÍÄ£Äâ¡¢¶þÑõ»¯Ì¼Ìá¸ß²ÉÊÕÂÊÓë̼Âñ´æµÈ £¬ÔøÊÜÆ¸µ£µ±ÃÀ¹úµÂÖÝ´óѧ°Â˹͡·ÖУ(The University of Texas at Austin)ʯÓÍÓëµØÖÊϵͳ¹¤³ÌϵÌá¸ß²ÉÊÕÂÊʵÑéÊÒÖ÷¹Ü ¡£ÒÔµÚÒ»×÷ÕßÉí·ÝÔÚSPE Journal¡¢ SPE Reservoir Evaluation & EngineeringµÈÆÚ¿¯½ÒÏþÂÛÎÄ20ÓàÆª £¬SPEµÈ¾Û»áÂÛÎÄ10ÓàÆª£»µ£µ±¶à¸öSCIÆÚ¿¯ÇàÄê±àί¡¢¿Í×ù±à¼­ºÍÉó¸åÈËÊÂÇé ¡£

ÓÊÏ䣺baojia90@cup.edu.cn; baojia90@gmail.com

¹È¸èѧÊõÖ÷Ò³£ºhttps://scholar.google.com/citations?user=1yKiWgsAAAAJ&hl=en


¡¾ÕÐÉúרҵ¡¿£º

£¦ ѧÊõÐÍ˶ʿ£ºÊ¯ÓÍÓë×ÔÈ»Æø¹¤³Ì082000

£¦ רҵÐÍ˶ʿ£ºÊ¯ÓÍÓë×ÔÈ»Æø¹¤³Ì085706

£¦ ѧÊõ²©Ê¿£ºÊ¯ÓÍÓë×ÔÈ»Æø¹¤³Ì082000

£¦ ¹¤³Ì²©Ê¿£º×ÊÔ´ÓëÇéÐÎ085706

¡¾½ÌÓýÅä¾°¡¿£º

£¦ 2014-08ÖÁ2018-12 University of Kansas£¨ÃÀ¹ú£© ²©Ê¿

£¦ 2012-06ÖÁ2014-08 New Mexico Institute of Mining and Technology£¨ÃÀ¹ú£© ʯÓÍÓë×ÔÈ»Æø¹¤³Ì ˶ʿ

£¦ 2008-08ÖÁ2012-06 ¿­Ê±£¨»ª¶«£© ÓÍÆø´¢Ô˹¤³Ì ѧʿ

¡¾Ñо¿Æ«Ïò¡¿£º

£¦ Ò³ÑÒÓÍÆø¡¢ÖÂÃÜÓÍÆøºÍÓÍÒ³ÑÒ¸ßЧ¿ª·¢

£¦ ¶þÑõ»¯Ì¼Ìá¸ß²ÉÊÕÂÊÓë̼Âñ´æ

£¦ µØ²ã´¢ÄÜÓëµØÈÈ¿ª·¢

¡¾Ö÷ÒªÉùÓþºÍ½±Àø¡¿:

£¦ È«Çòǰ2%¶¥¼â¿ÆÑ§¼Ò

£¦ Öйú·¢Ã÷Э»áÁ¢Òì½±¶þµÈ½±

£¦ ¿­Ê±£¨±±¾©£©ÓÅÒìÇàÄêѧÕß

£¦ SPE JournalÓÅÒìÉó¸åÈ˽±

£¦ Frank Bowdish Outstanding PhD Award

¡¾ÊÂÇéÂÄÀú¡¿£º

£¦ 2021-04ÖÁ½ñ ¿­Ê±£¨±±¾©£© ¸±Ñо¿Ô±

£¦ 2020-08ÖÁ2020-12 ±±´ï¿ÆËû´óѧ(University of North Dakota)ʯÓ͹¤³Ìϵ£¨ÃÀ¹ú£© ÖúÀí½ÌÊÚ

£¦ 2019-03ÖÁ2020-08 ÄÜÔ´ÓëÇéÐÎÑо¿ÖÐÐÄ(Energy & Environmental Research Center)£¨ÃÀ¹ú£© ÓͲع¤³Ìʦ

¡¾¿ÆÑÐÏîÄ¿¡¿:

[15] ¹ú¼Ò×ÔÈ»¿ÆÑ§»ù½ðÃæÉÏ»ù½ð £¬5247040153 £¬³¬ÁÙ½çˮԭλת»¯ÓÍÒ³ÑÒ»úÀíÑо¿ £¬2025-2028 £¬48Íò £¬ÔÚÑÐ £¬Ö÷³Ö

[14] ³¤ÇìÓÍÌï·Ö¹«Ë¾¿±Ì½¿ª·¢Ñо¿Ôº £¬2023Äê2023-2024ÄêÓÍ²ØÆÀ¼ÛÒ³ÑÒÓ͹¥¹ØÊÔÑéÇøÐ§¹ûÆÀ¼Û £¬2023-2024 £¬53Íò £¬ÔÚÑÐ £¬¼ÓÈë¡¢µÚ¶þÈÏÕæÈË

[13] ÖйúʯÓÍ×ÔÈ»Æø¹É·ÝÓÐÏÞ¹«Ë¾Î÷ÄÏÓÍÆøÌï·Ö¹«Ë¾¿±Ì½¿ª·¢Ñо¿Ôº £¬½ðÇïÇø¿éÖÂÃܺÓÁ÷ɰÑÒµØÖʹ¤³ÌÒ»Ì廯½¨Ä£¼°EURÖ÷¿ØÒòËØÑо¿ £¬2023-2024 £¬29.7Íò £¬ÔÚÑÐ £¬Ö÷³Ö

[12] ÖйúʯÓÍ×ÔÈ»Æø¹É·ÝÓÐÏÞ¹«Ë¾¿±Ì½¿ª·¢Ñо¿Ôº £¬Ò³ÑÒÓͺ£ÄÚÍâÊÖÒÕµ÷Ñм°ÆÊÎöÑо¿ £¬2023-2024 £¬34.8Íò £¬½áÌâ £¬Ö÷³Ö

[11] ÖйúʯÓÍ»¯¹¤¹É·ÝÓÐÏÞ¹«Ë¾Ê¯ÓÍ¿±Ì½¿ª·¢Ñо¿Ôº £¬ÓÍÒ³ÑÒԭλ¿ª²ÉֹˮһÌ廯ҪÁì¼°»úÀíÑо¿ £¬2022-2024 £¬29.5Íò £¬ÔÚÑÐ £¬Ö÷³Ö

[10] ´óÇìÓÍÌïÓÐÏÞÔðÈι«Ë¾ºÍºÚÁú½­Ê¡¿Æ¼¼Ìü £¬¹ÅÁúÒ³ÑÒÓÍÌá¸ß²ÉÊÕÂÊÒªº¦ÎÊÌâÑо¿ £¬2021-2025 £¬971.805Íò £¬ÔÚÑÐ £¬¼ÓÈë

[9] ÖÐʯÓÍÕ½ÂÔÏàÖú¿Æ¼¼×¨Ïî-×¼¸Á¶ûÅèµØÂêºþÖÐÏÂ×éºÏºÍ¼ªÄ¾Èø¶û½ÏàÒ³ÑÒÓ͸ßЧ¿±Ì½¿ª·¢ÀíÂÛ¼°Òªº¦ÊÖÒÕÑо¿ £¬Æ½ºâѹÁÑÓëÆøÇý/ÍÌÍÂÒ»Ì廯Ìá²úÊÖÒÕ¼°Ð§¹ûÆÀ¹ÀÑо¿ £¬2019-2024 £¬9310Íò £¬ÔÚÑÐ £¬¼ÓÈ롢רÌâÈÏÕæÈË

[8] ÖÐÑë¸ßУ»ù±¾¿ÆÑлù½ð £¬2462021QNXZ004 £¬Ò³ÑÒÑÒʯÎïÀíÌØÕ÷µÄ¶à±ê×¼ÕÉÁ¿ºÍÄ£Äâ £¬2021-2024 £¬60w £¬ÔÚÑÐ £¬Ö÷³Ö

[7] ÃÀ¹úÄÜÔ´²¿Department of Energy £¬Subtask 3.1 - Bakken Rich Gas Enhanced Oil Recovery £¬2020-2020 £¬~$3,000,000 £¬½áÌâ £¬¼ÓÈë

[6] ÃÀ¹ú±±´ï¿ÆËûÖÝState Energy Research Center (SERC) £¬Crude Oil Swelling with Injected Produced Gas and CO2 as a Potential Mechanism for Enhanced Oil Recovery (EOR) in the Bakken £¬2019-2020 £¬$117,611 £¬½áÌâ £¬Ö÷³Ö

[5] ÃÀ¹ú±±´ï¿ÆËûÖÝNorth Dakota Pipeline AuthorityºÍNorth Dakota Industrial Commission £¬Assessment of Bakken and Three Forks Natural Gas Compositions £¬2019-2020 £¬$300,650 £¬½áÌâ £¬¼ÓÈë

[4] ÃÀ¹ú±±´ï¿ÆËûÖÝNorth Dakota Industrial Commission £¬Underground Storage of Produced Natural Gas ¨C Conceptual Evaluation and Pilot Project(s) £¬2019-2021 £¬~$6,000,000 £¬½áÌâ £¬¼ÓÈë

[3] ÂíÀ­ËÉʯÓ͹«Ë¾Marathon Petroleum Corporation£¨ÃÀ¹ú£© £¬Evaluation and Quantification of CO2 Sorption in Bakken Shale and Interactions Between C02 and Three Forks Rock and Brine £¬2019-2020 £¬$525,000 £¬½áÌâ £¬¼ÓÈë

[2] ÇÐÈøÆ¤¿ËÄÜÔ´¹«Ë¾Chesapeake Energy£¨ÃÀ¹ú£© £¬Gas Huff and Puff to improve oil recovery in the Eagle Ford £¬2016-2018 £¬~$110,000 £¬½áÌâ £¬¼ÓÈë

[1] ÃÀ¹úÄÜÔ´²¿Department of Energy £¬Nanoparticle-Stabilized CO2 Foam for CO2 EOR Application £¬2010-2015 £¬$ $1,158,822 £¬½áÌâ £¬¼ÓÈë

¡¾²¿·ÖÒ»×÷/ͨѶÆÚ¿¯ÂÛÎÄ¡¿:

[23] ³¬µÍÉøÖÂÃÜɰÑÒºÍÒ³ÑÒ´¢²ãÉøÁ÷ÄÜÁ¦Ë²Ì¬·¨ÆÀ¼ÛÏ£Íû £¬Ê¯ÓÍ¿ÆÑ§×ª´ï £¬2024, 9(4), 659-678.

[22] Oil Shale In Situ Production Using a Novel Flow-Heat Coupling Approach. ACS omega, 2024, 9(7), 7705-7718.

[21] Machine learning and UNet++ based microfracture evaluation from CT images. Geoenergy Science and Engineering, 2023, 226, 211726.

[20] Improved Petrophysical Property Evaluation of Shaly Sand Reservoirs Using Modified Grey Wolf Intelligence Algorithm. Computational Geosciences, 2023, 27(4), 537-549.

[19] Status and outlook of oil field chemistry-assisted analysis during the energy transition period. Energy & Fuels, 2022, 36(21), 12917-12945.

[18] Mechanistic Understanding of Delayed Oil Breakthrough in Near-Critical Point Shale Oil Reservoirs. In SPE Eastern Regional Meeting (p. D031S005R003). 2022. SPE.

[17] Permeability measurement of the fracture-matrix system with 3D embedded discrete fracture model. Petroleum Science, 2022, 19(4), 1757-1765. £¨¸ß±»ÒýÂÛÎÄ£©

[16] Investigations of CO2 storage capacity and flow behavior in shale formation. Journal of Petroleum Science and Engineering, 2021, 208, 109659.

[15] Pore pressure dependent gas flow in tight porous media. Journal of Petroleum Science and Engineering, 2021, 205, 108835.

[14] Extension of the Gas Research Institute (GRI) method to measure the permeability of tight rocks. Journal of Natural Gas Science and Engineering, 2021, 91, 103756.

[13] Intelligent materials in unconventional oil and gas recovery. In Sustainable Materials for Oil and Gas Applications (pp. 175-206). 2020, Gulf Professional Publishing.

[12] An integrated approach of measuring permeability of naturally fractured shale. Journal of Petroleum Science and Engineering, 2020, 186, 106716.

[11] Carbonated water injection (CWI) for improved oil recovery and carbon storage in high-salinity carbonate reservoir. Journal of the Taiwan Institute of Chemical Engineers, 2019, 104, 82-93.

[10] Revisiting approximate analytical solutions of estimating low permeability using the gas transient transmission test. Journal of Natural Gas Science and Engineering, 2019, 72, 103027.

[9] Investigation of shale-gas-production behavior: evaluation of the effects of multiple physics on the matrix. SPE Reservoir Evaluation & Engineering, 2019, 23(01), 068-080.

[8] Measurement of CO2 diffusion coefficient in the oil-saturated porous media. Journal of Petroleum Science and Engineering, 2019, 181, 106189.

[7] Multiphysical flow behavior in shale and permeability measurement by pulse-decay method. In Petrophysical characterization and fluids transport in unconventional reservoirs (pp. 301-324). 2019, Elsevier.

[6] A review of the current progress of CO2 injection EOR and carbon storage in shale oil reservoirs. Fuel, 2019, 236, 404-427. £¨¸ß±»Òý¡¢ÈÈÃÅÂÛÎÄ£©

[5] Insights into the Gas Transmission Test at Multiscale Based on Discrete-Fracture Model and History Matching. In SPE Eastern Regional Meeting (p. D033S004R005). 2018. SPE.

[4] Experimental and numerical investigations of permeability in heterogeneous fractured tight porous media. Journal of Natural Gas Science and Engineering, 2019, 58, 216-233.

[3] Role of molecular diffusion in heterogeneous, naturally fractured shale reservoirs during CO2 huff-n-puff. Journal of Petroleum Science and Engineering, 164, 31-42.

[2] A workflow to estimate shale gas permeability variations during the production process. Fuel, 220, 879-889.

[1] Different flow behaviors of low-pressure and high-pressure carbon dioxide in shales. SPE Journal, 23(04), 1452-1468.


¡¾ÍøÕ¾µØÍ¼¡¿¡¾sitemap¡¿